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We report on the reconstruction of the decay mode B0 ! J= K0
S using 19.3

pb�1 of data collected by the Collider Detector at Fermilab in �pp collisions at
p
s =

1:8 TeV. A signal of 41:8 � 6:9 events, with a signal-to-background ratio of 9:1, is

observed. Three additional decay modes B+ ! J= K+, B0 ! J= K�(892)0 and

B+ ! J= K�(892)+ are reconstructed. We measure three ratios of branching ratios,

each one relative to the B+ ! J= K+ mode. We also report the ratio of production

rates, �(B ! J= K�)/�(B ! J= K), for the vector-vector relative to the vector-

pseudoscalar modes, to be 1:32� 0:23 (stat:)� 0:16 (syst:).

PACS numbers: 13.25.Hw, 14.40.Nd

PACS numbers: 13.25.Hw, 14.40.Nd

This Letter reports on the reconstruction of the decay B0 ! J= K0
S [1] with the sub-

sequent decay K0
S ! �+�� and on three additional B ! J= K(�) modes [2]. We recon-

struct the isospin partner B+ ! J= K+ and the pseudoscalar-to-vector-vector transitions,

B0 ! J= K�(892)0 and B+ ! J= K�(892)+. We measure three ratios of branching ratios:

BR(B0 ! J= K0)=BR(B+ ! J= K+), BR(B0 ! J= K�(892)0)/BR(B+ ! J= K+),

BR(B+ ! J= K�(892)+)/BR(B+ ! J= K+), and report the ratio formed by combining

the pseudoscalar-to-vector-vector modes relative to the pseudoscalar-to-vector-pseudoscalar

modes, which we refer to as the \vector-pseudoscalar ratio". By forming ratios, we mini-

mize several systematic uncertainties, the largest of which are associated with the b-quark

production cross section and transverse momentum spectrum. Together with information

on the polarization in the decay B ! J= K� [3{5], these decay modes are of particular

interest to test theoretical predictions that depend on the factorization hypothesis [6,7] and

the B ! K(�) form factor [8].

The decay mode B0 ! J= K0
S is expected to provide the �rst observation of CP vio-

lation outside the kaon system. From a theoretical point of view, the decay B0 ! J= K0
S
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has several properties that make it ideal for the search for CP violation in the b-quark sys-

tem [9,10]. Experimentally, a large cross section for B meson production at the Tevatron

collider has been measured [11]. Furthermore, the decay of the J= ! �+�� simpli�es the

triggering and the long lifetime of the K0
S permits the isolation of a clean K0

S signal in the

hadron collider environment without explicit particle identi�cation.

The data used in this analysis were collected with the Collider Detector at Fermilab

(CDF) during the 1992-1993 run. The data correspond to an integrated luminosity of 19.3

pb�1 of �pp collisions at
p
s = 1:8 TeV. The CDF detector is described in detail elsewhere [12].

We describe here only the detector components most relevant to this analysis. Two devices

inside the 1.4 T solenoid are used for the tracking of charged particles: the silicon vertex

detector (SVX) and the central tracking chamber (CTC). The SVX consists of four layers of

silicon microstrip detectors located at radii between 3.0 and 7.9 cm from the interaction point

and provides spatial measurements in the r-' plane [13], giving a track impact parameter

resolution of (13 + 40=PT ) �m [14], where PT is the transverse momentum of the track

in GeV/c. The CTC is a cylindrical drift chamber containing 84 layers grouped into nine

alternating superlayers of axial and stereo wires. It covers the pseudorapidity interval j�j <
1:1, where � = � ln[tan(�=2)]. The PT resolution of the CTC combined with the SVX is

�(PT )=PT = ((0:0066)2 + (0:0009PT )
2)1=2. Two muon subsystems in the central region were

used, the central muon chambers and the central muon extension, which together provide

coverage in the interval j�j < 1:0.

Dimuon events were collected using a three-level trigger system. The �rst level required

two charged tracks in the muon chambers. The e�ciency for �nding a muon at level one

rises from 30% at PT = 1:5 GeV/c to 93% for PT > 3 GeV/c. Level two requires that at

least one of the muon tracks match a charged track in the CTC found with the Central Fast

Track (CFT) processor. The e�ciency for �nding a CTC track in the CFT at level two rises

from 50% for PT > 2:6 GeV/c to 94% for PT > 3:1 GeV/c. The third level software trigger

requires that two oppositely charged CTC tracks each match muon track segments and that

the �+�� invariant mass is between 2.8 and 3.4 GeV/c2 to select J= candidates.
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The B meson reconstruction starts with the isolation of the J= signal. First, the

CTC track is extrapolated to the muon chambers and this position is required to match

the muon track segment to within three standard deviations, which is derived from the

multiple scattering and measurement errors. Only tracks measured in three dimensions by

the CTC are used and good quality SVX information is added when available, which is in

approximately 50% of the candidates. We calculate the invariant mass of two oppositely

charged muon candidates after constraining them to originate from a common point in space

(\vertex constraint"). The con�dence level (CL) of the �t is required to be greater than

1%. We require one muon with PT > 1:8 GeV/c and the other one with PT > 2:5 GeV/c

to ensure we operate in a well-measured region of the trigger e�ciency. We �nd 62146�299
J= meson candidates with a signal-to-background ratio of 5:1 [15].

After mass constraining the J= to the world average value [16] and requiring the CL>

1%, the next step is to search for kaon candidates from all other tracks within the CTC

�ducial volume. For the J= K+ mode, every track is considered a kaon candidate. The

K0
S selection requires two oppositely charged tracks with PT > 0:35 GeV/c, each track

satisfying d�=�d� > 2, where d� is the distance of closest approach to the beam position,

and �d� is the corresponding uncertainty, which includes the track measurement errors and

the beam position uncertainty. The �+�� pairs are vertex constrained, required to point

to the J= vertex and satisfy the requirement, CL> 1%. A signed two-dimensional decay

length Lxy(K
0
S), de�ned as the displacement of the K0

S vertex projected onto the direction

of the PT (K
0
S), is required to be greater than 1.0 cm. We �nd 7733 � 101 K0

S candidates

with a signal-to-background ratio of 7:1 [15]. The K�(892)+ candidate is formed with a K0
S

candidate plus a track, assumed to be a �+, and the K�(892)0 candidate is formed from two

charged tracks assumed to be a K+ and a ��. The K-� particle assignment with invariant

mass closest to the world average mass [16] of the K�(892)0 is retained and combinations

where the K� mass is greater than 75 MeV/c2 from the world average mass are rejected.

Several constraints are imposed to improve the B mass resolution. In order to maximize

the combinatoric background rejection, these constraints are applied incrementally and for
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each added constraint we require CL(��2) > 1%, where ��2 is the change in �2 due to

the additional constraint. For the J= K+ mode, the K+ candidate track is added to the

J= vertex constraint. For the J= K0
S mode, K0

S decay products are vertex and mass

constrained and the K0
S is constrained to point to the J= vertex in three dimensions. For

the J= K�(892)+ mode, the K0
S is constrained to point to the three-track J= �+ vertex

and for the J= K�(892)0 mode, the four tracks are vertex constrained. For all four modes,

the B candidate system is constrained to point to the primary vertex.

To further reduce the combinatoric background, we require PT (K
(�)) > 1:5 GeV/c,

PT (B) > 7 GeV/c, and c� (B) > 100 �m, where c� (B) is computed using the displacement of

the J= vertex projected onto the direction of the PT (B). The normalizedmass distributions

are shown in Fig. 1 for J= K+, J= K0
S , and in Fig. 2 for the J= K

�(892)0 and J= K�(892)+.

The normalized mass is computed for each candidate by dividing the di�erence between the

invariant mass and the world average B mass [16] by the error on the mass, where the

error is determined using the full covariance matrix for each candidate. The normalized

mass follows a Gaussian shape more closely than the invariant mass distribution. The

number of signal events is obtained by �tting a Gaussian of width �xed to 1.0 and a at

background to the normalized mass distributions. The binned maximum likelihood method

gives 169 � 18, 41:8 � 6:9, 71 � 12, and 17:0 � 4:7 signal events in the B+ ! J= K+,

B0 ! J= K0
S, B

0 ! J= K�(892)0, and B+ ! J= K�(892)+ channels, respectively. The

signal-to-background ratios [15] are given in Table I.

The ratio of branching ratios is computed using the relation:

BR(B0 ! J= K0)

BR(B+ ! J= K+)
=

2N(J= K0
S)

N(J= K+)
� �J= K+

�J= K0
S

� 1

BR(K0
S ! �+��)

;

where the factor of two corrects for K0 ! K0
L, which is not reconstructed, and we assume

equal production rates of B+ and B0 mesons. World average branching ratios are used for

all K(�) daughter decays [16], an isospin analysis determines BR(K�(892)0 ! K+��) = 2=3

and BR(K�(892)+ ! K0�+) = 2=3.

The reconstruction e�ciencies are factorized as:
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�J= K+ = �PT (B)� �c�(B) � �J= � �PT (K+) � �RJ= K+

�J= K0
S
= �PT (B)� �c�(B) � �J= � �PT (K0

S
) � �RJ= K0

S
:

The e�ciency of the PT (B) cut (�PT (B)), the c� (B) cut (�c�(B)), the PT (K) cut (�PT (K)),

and the e�ciency for �nding the J= (�J= ), all cancel in the ratio. However, some of the

e�ciencies associated with the K0
S decay do not cancel in the ratio. The superscript R

denotes the remaining terms. To further facilitate cancellation, these terms are factorized

as:

�RJ= K+ = �GK+ � �Trk(K+) � ���2(J= K+)

���2(J= K+) = �V (�+��) � �M(�+��) � �V (K+) � �Pxy(J= K+) � �Pz(J= K+)

and

�RJ= K0
S
= �K0

S
� ���2(J= K0

S
)

�K0
S
= �G� � �PT (�) � �Trk(K0

S
) � �Lxy � �d�

���2(J= K0
S
) = �V (�+��) � �M(�+��) � �V (�+��) � �P (�+��) � �M(�+��) � �Pxy(J= K0

S
) � �Pz(J= K0

S
)

where the superscriptG indicates the term is a geometrical acceptance, V ,M , and P indicate

a vertex, mass, or pointing constraint, respectively, while Pxy and Pz refer to pointing

constraints in the x-y plane and z direction. We cancel the �V (K+) against the �P (�+��) term

and have veri�ed the cancellation by Monte Carlo simulation. Canceling the remaining terms

in the expansion of ���2(J= K+) against similar terms in ���2(J= K0
S
), leaves the e�ciency

product �R��2(J= K0
S
) = �V (�+��) � �M(�+��).

The geometrical acceptances, the �PT (�) term, the tracking e�ciencies (�Trk), and the �Lxy

are calculated using a Monte Carlo simulation that incorporates the following:

(1) The b-quark PT and rapidity distributions follow the next-to-leading order QCD [17]

calculation with MRS D0 [18] proton structure functions. We generate b quarks with rapidity

jyj < 1:0.
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(2) The B+ ! J= K+ and the B0 ! J= K0 decays involve a pseudoscalar-to-vector-

pseudoscalar decay. In the J= rest frame, the decay muons follow a sin2 � angular distri-

bution with respect to the kaon direction in the rest frame of the B meson.

(3) We measure the e�ciency of the CTC track reconstruction algorithm by embedding

simulated tracks in real data J= events. The tracks are generated so as to permit the

reconstruction of the B mass [2]. The kaons are required to have PT > 1:5 GeV/c. Only

tracks within the CTC �ducial volume are embedded. We measure a tracking e�ciency of

�Trk(K+) = (92:0 � 2:0 (syst:))% for K+. This result includes the e�ect of the K+ �nite

lifetime. The K0
S tracking e�ciency is �Trk(K0

S
) = (86:0 � 2:0 (syst:))% for PT (�) > 0:35

GeV/c.

The e�ciency of the d�=�d� > 2 cut (�d�), and the e�ciencies of the CL(��2) > 1%

requirement on the vertex and mass constraints of the �+�� pairs (�V (�+��), �M(�+��)), were

obtained from the inclusive K0
S sample. In summary we determine the ratio of e�ciencies

to be �J= K+=�J= K0
S
= 1:57� 0:08 (syst:).

For the J= K�(892)0 and the J= K�(892)+ decay modes, the e�ciencies are factorized

in the same manner. For both ratios, J= K�(892)0=J= K+ and J= K�(892)+=J= K+, the

e�ciencies for the cuts on c� (B) and PT (B), will cancel.

The e�ciency for �nding the J= and the e�ciency of the PT (K
(�)) cut do not completely

cancel because of the K� polarization and the K�{K mass di�erence. Both of these ratios

are corrected for the acceptance of the K� mass window, which is computed by integrating

a Breit-Wigner distribution.

Each J= K�=J= K+ ratio also has unique non-canceling e�ciencies. For the K�(892)0

case, there is the e�ect of slightly di�erent geometrical acceptances and e�ciencies for the

K+, as well as four terms associated with the ��: the e�ciency of the PT (�) cut, the

track and geometric e�ciencies, and the e�ciency of adding an extra track to the vertex

constraint.

For the J= K�(892)+=J= K+ ratio, both modes have a charged track originating from

the B decay vertex. However, the geometric acceptance, track reconstruction, kinematic and
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CL(��2) cut e�ciencies are slightly di�erent. The e�ciencies associated with theK0
S do not

cancel, and are determined in the same manner outlined previously. We use the Monte Carlo

method described above to compute the ratio of the remaining e�ciencies. The e�ciencies

and numbers of events for all four modes are summarized in Table I.

Six sources of systematic uncertainty contribute to the ratio of e�ciencies. Each uncer-

tainty in the lifetimes, �B+ and �B0, contributes a 2% uncertainty to the c� (B) > 100 �m

cut. This contributes a 2.8% systematic error for the ratio of e�ciencies. The ratio of track-

ing e�ciencies has a 2{3.5% systematic error, depending on the mode. The CL(��2)> 1%

requirement adds 2{2.8% and was determined from the inclusive K0
S sample. Polarization,

(�L=�), uncertainties contribute 1.9{2.4% and the variation of the b-quark PT spectrum in

the Monte Carlo simulation contribute 1.7{7.6%. In the two cases where the J= trigger

e�ciencies do not cancel due to di�erent polarization e�ects in the ratio, we determine the

ratio of the number of events with and without a trigger requirement, and assign an addi-

tional 5% uncertainty due to the di�erence in the ratios. The uncertainties are combined in

quadrature, and are summarized in Table II.

We �nd the ratios of branching ratios to be:

BR(B0 ! J= K0)=BR(B+ ! J= K+) = 1:13 � 0:22 (stat:)� 0:06 (syst:)

BR(B0 ! J= K�(892)0)=BR(B+ ! J= K+) = 1:33 � 0:27 (stat:) � 0:11 (syst:)

BR(B+ ! J= K�(892)+)=BR(B+ ! J= K+) = 1:55 � 0:46 (stat:) � 0:16 (syst:).

We also determine the combined vector-to-pseudoscalar ratio using all four modes to be

R = �(B ! J= K�)=�(B ! J= K) = 1:32 � 0:23 (stat:)� 0:16 (syst:),

where we assume equal production of B+ and B0 mesons and the systematic error is summa-

rized in Table II. The dominant systematic uncertainty of 9% comes from the B meson life-

time ratio, �B+=�B0 [16]. In addition we use the world average value BR(B+ ! J= K+) =

(1:02 � 0:14)� 10�3 [16] to obtain three branching ratios

BR(B0 ! J= K0) = [1:15� 0:23 (stat:)� 0:17 (syst:)]� 10�3
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BR(B0 ! J= K�(892)0) = [1:36 � 0:27 (stat:)� 0:22 (syst:)]� 10�3

BR(B+ ! J= K�(892)+) = [1:58 � 0:47 (stat:)� 0:27 (syst:)]� 10�3,

where the quoted systematic error includes the uncertainty in the BR(B+ ! J= K+).

These results are consistent with the current world average values [16].

In conclusion, we have presented the details of the reconstruction of the CP eigenstate

B0 ! J= K0
S in a hadron collider environment and demonstrated that a good signal-

to-background ratio is achieved. We have reported three branching ratios using B0 !
J= K�(892)0, B+ ! J= K�(892)+, and B0 ! J= K0 relative to B+ ! J= K+, which are

comparable in precision and in good agreement with the current world average values [16].

We also combine these four decay modes to determine the vector-to-pseudoscalar ratio

and con�rm a previous determination of R = 1:64 � 0:34 [19], where naive spin counting

would predict a value of three for the vector-to-pseudoscalar ratio. Theoretical models [6{8]

that assume the factorization hypothesis and use current meson form factors are presently

not able to simultaneously accommodate a low vector-to-pseudoscalar ratio and the polar-

ization data [5]. This measurement reinforces the need for a better understanding of these

models.
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The normalized mass distribution for (a) J= K+ and (b) J= K0
S after all cuts.
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FIG. 2.
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The normalized mass distribution for (a) J= K�(892)0 and (b) J= K�(892)+ after all cuts.

15



TABLE I. Summary of number of events, signal-to-background (S/B), and ratios of e�ciencies

relative to the B+ ! J= K+ decay mode.

J= K+ J= K0
S J= K�(892)0 J= K�(892)+

Number of Events 169� 18 41:8� 6:9 71� 12 17:0� 4:7

S/B 0.97 9.23 0.77 3.12

Ratio of e�ciencies - 1:57� 0:08 2:11� 0:18 3:53� 0:37

TABLE II. Summary of systematic uncertainties (%) for the ratios of branching ratios.

�J= K+=�J= K0
S

�J= K+=�J= K�0 �J= K+=�J= K�+ �V =�P

�B+=�B0 2:8 2:8 - 9

Trk E�ciency 2.8 2 3:5 2.1

CL(��2) 2:8 2 3:5 2.1

�L=� - 1.9 2.4 1.9

PT (b) Variations 1:7 5.4 7.6 5.5

Trigger - 5 5 5

Total 5.0% 8.6% 10.6% 12%
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